Chalk Talk – #1 – Squat Knee Control

During the Q&A a week or so ago, some members were asking for a regularly updated “show” on YouTube (since they are the cool thing to do in the fitness-sphere).

In episode #1 I’m talking about knee control in the squat. A common problem with squatting is that trainees don’t have control of what their knees are doing because their external hip rotators — particularly the glutes — are not trained to maintain tension throughout the movement. In this video I show one of my wife’s front squat sets where you can see when she actively engages the external rotators and when she does not. Her case is specific: she had a long term hip injury and front squats focused on this glute activation have been the rehab. Don’t focus on my cues as I’m trying more so to talk to the camera than her, but also the cues she and I have for this issue are vague because she understands what she is supposed to do after we spent a lot of time teaching her what “correct” felt like.

In any case, this is the first episode of Chalk Talk. Discuss in the comments and feel free to request new topics.

Deadlift Progress

I met Philip Wilkerson III a few years ago when I first did a seminar at CrossFit Anandale. In the summer of 2011, his deadlift max was 375 while weighing a self proclaimed “210 pounds and in terrible shape”. Phil was working through a wrist injury a bit after and it slowed down his progress quite a bit. Long story short, after working with Jeremy Wolfe at CF Anandale and programming with Chris Riley, Phil has made some excellent progress, especially with deadlifting.

Phil weighed in at 179 for this meet and pulled the 578 above. You’ll notice he leaned back at the top of the rep — this is something he’s never done before because he was excited. Leaning back at the deadlift lockout typically unlocks the knees, and in USAPL they look at knee extension in order to white light a lift. Despite not being credited with the lift, the bar speed was awesome considering this was the heaviest weight he’s ever pulled. I was really impressed with this lift, especially because Phil has progressed so well with consistent strength training. Not to mention he has a lean, jacked 180 pounds instead of a “fat 210″. Nice work, Phil.

The Lean Back

Phil doesn’t have a habit of this, but I see it ALL of the time in CrossFit. Leaning back is a horrible, god forsaken thing to do. It looks like shit because it’s shitty. First, it hyper extends the spine and/or posteriorily rotates the pelvis under a load. I can’t think of a better way to have a disc injury than to do this. If you want your intervertebral discs squirting out the front of your body, then this is how you’d accomplish it. Second, since the movement usually pushes the hips forward slightly, the knees will unlock in order to keep a center of mass over the mid-foot, resulting in a lack of knee extension (which is the issue we see above). Third, it’s just wrong. You aren’t any more “locked out” for a deadlift by leaning back. By standing straight up with your hip straight, you are effectively fully extending the hip. Finally, you lose out on intra-abdominal and thoracic pressure by allowing laxity in your spine, and this isn’t good for the moment you’re lifting, and it’s not good for proper trunk development over time.

Instead, merely stand up with the weight and lift the chest slightly. Lifting the chest is actually a USAPL requirement as it will ensure thoracic extension; leaving the upper back rounded is not fully locking the lift out since it could result holding the bar several inches lower than had you actually extended the upper back.

If you’re confused about the position, then stand up, contract your lower abs, and completely contract your glutes with your chest up. Now put a bar in your hand and that’s all you need to do.

The “tut-tut-tut”

In Phil’s video, you see a bit of shakiness, or as I call it, the “tut-tut-tut” as he’s locking the lift out. His hamstrings are not accustomed to maintaining such tension while they extend the hips, so the result is a shaky lockout. This is both a strength and a neuromuscular efficiency issue, and we typically rectify it with rack pulls from right below the patella with vertical shins. I talk about them in the Texas Method books, but they are the first thing we do to address lockout issues in the deadlift. I also like RDL’s, but there is no substitute for forcing the hamstrings to maintain tension and contract to extend the hips.

I talk more about the “tut-tutting” in Rack Pull Tidbits and Q&A – 14.

Nice job, Phil. Keep training hard. I don’t think he’ll mess up another deadlift lockout for the rest of his powerlifting career. You can follow Phil on Instagram and Twitter.

Bench Safety

I felt the need to post this video as a public service announcement and reminder about the most dangerous thing you can do in the gym: the bench press.

In my seminars, I always say, “The easiest way to die in this room is by getting caught under a bar while benching.” And, no shit, you can literally fucking die. The fella in the video is lucky he wiggled out from under the bar.


How You’ll Die

The bar can fall in one of several ways: 1) it can easily slip out of your hands with a false grip, 2) it can fall during the hand-off, or 3) the lifter can get pinned under the bar because of mechanics or strength fails. The bar can either fall on your sternum, neck, or face.

A fractured sternum can irritate a lot of important organs and structures like the lungs, heart, and major blood vessels like the ascending aorta (a thick artery pumping blood) and the superior vena cava (returning blood to the heart). Destroying your heart or bleeding into your thorax would make for a bad afternoon.

If the bar falls on your neck it can destroy the trachea resulting in a damaged airway, an injury that can kill. This happened to a USC football player a few years ago, and luckily he lived after surgery. You may not be so lucky.

If the bar falls on your face, then you’ll likely fracture whatever bone it hits as well as knocking plenty of teeth out. You could aspirate on the teeth and have an airway obstruction, and I don’t think you’re fellow gym goers know how to do an emergency cricothyrotomy. Face fractures don’t sound like fun.

How Not To Die

1. Always have a spotter. They can’t stop the bar from falling on your chest, neck, or face, but they can get it off of you. The guy in the video above almost didn’t, and if he was no-shit pinned, then he could have died flailing on the bench. The spotter can also help with the lift-off and re-rack, which leads us into…

2. Keep the elbows extended when the bar moves over the face. A spotter can help control the bar through this range of motion. When you’re finishing a set, especially when you’re fatigued, you should keep the elbows extended and push the bar back above your head until it hits the J-hooks of your rack. This is critical when lifting without a spotter.

3. When alone, do not use collars. The guy in the video didn’t use them, but bumper plates have a tendency to stick to a bar a little better than iron plates (as you can observe in the video). By not using collars, you can try and push the bar to the side to let some plates fall off, which will cantilever the opposite side off of you.

4. Don’t use a false grip AKA a grip in which the thumbs are not wrapped around the bar. False gripping doesn’t secure the bar with the thumb and leaves an easy angle for the bar to fall right off the heel of the hand. People use them because they don’t know how to hold a bar correctly (overhead or for a bench) while keeping the wrists in a neutral position. You’ll see strong-ass mofos using a false grip, especially in YouTube videos, but if they changed their hand position and maybe improved their shoulder mobility a smidge, they wouldn’t need it. False gripping is like holding a pencil in your fist; stupid as hell.

Am I exaggerating this? 

I might be going overboard in explaining how you can fucking die, but that doesn’t mean the risk isn’t there. Benching, especially benching alone, is by far the most dangerous activity in a gym. Practice and teach good benching habits like using a good spotter, keeping the elbows extended when the bar moves over the face, not using collars when lifting alone, and not using a false grip. Your mother will thank me.

A Better Spinal Cue

I was being coached on rack pulls and was told to arch my back as hard as I could. I did so, started pulling the weight, and YANK; there went something in my lower back. Severe sharp pain indicated the end of my lifting session as well as the next week or two of training. I didn’t know as much as I did now, but the injury — and time away from training — all could have been avoided with a better spinal cue.

There are two basic types of incorrect spinal position in lifting: over extension and over flexion.

Over Flexion, Round Back, or Lumbar Hyperkyphosis


Obvious flexion

This is the position that most coaches, especially the inexperienced, are most afraid of. It’s the default position for new trainees and very easy to identify. New trainees look like this because a) they do not have any kinesthetic awareness (i.e. have no control of what their body is doing), b) typically have no hamstring or lower back strength, and c) have very poor mobility.

Correcting kinesthetic awareness and mobility take time, so the quick and easy fix is to say “arch your back”. Usually this cue will improve a new trainee’s mechanics immediately, and usually hamstring strength, kinesthetic awareness, or mobility don’t have to be addressed for months. This means that people who only coach beginners will default into cuing “arch the back” and ignore other variables. If you neglect to address these variables and just focus on increasing the lifting load, then at some point they’ll experience an injury, great or small. Increasing the weight lifted is not necessarily synonymous with getting stronger.

Over Extension, Arched Back, Hyperlordosis

Too extended

Too extended

This position is difficult to distinguish from a neutral (i.e. correct and optimal) spinal position, therefore inexperienced coaches overlook it. Experienced coaches occasionally think an overly arched back is acceptable to avoid a rounded back, but a good coach will cue the correct position to avoid injury.

Two areas are often affected by hyperlordosis: the thoracolumbar junction (where the thoracic and lumbar spine meet) and the lumbosacral junction (where the lumbar and sacral spine meet — see image below). These are easy landmarks any coach should be able to identify on their trainee, but don’t worry about the more complicated anatomy under the skin right now. Here we will focus on how the overly arched position is a great way to cause disc irritation or strain muscles.


Note the junctions between different areas of the spine. Click for larger view.

Why These Positions Are Bad

Both spinal position extremes, flexion and extension, can cause injury and are indicative of a lack of strength and positional control. Whether we call this kinesthetic awareness, neuromuscular efficiency, coordination, technique, or mechanics is irrelevant; let’s set the rhetoric aside and briefly discuss why each position is poor.

An overly flexed spine means that the related spinal muscles are not doing their job of holding the spine and pelvis in place. It’s important to remember the integration of spine and pelvis in lifting mechanics as it will determine stability, transmission of force, and subsequently overall strength. If the muscles aren’t doing their job, then they don’t get stronger. But a secondary impact is that other muscles can’t do their job when the spine and pelvis are out of position. The best and most obvious example is with the hamstrings.

A fantastic image I made long ago for this topic.

A fantastic image I made long ago for this topic.

If the pelvis and spine are rounded — which is lumbar flexion and a posterior pelvic tilt — as they are on the right, then the hamstrings will be slack and the trainee will look like a dog pooping. If the spine and pelvis are in a neutral, stable position — a relative lumbar extension and anterior pelvic tilt — then it pulls the proximal (or higher) attachment of the hamstrings back, thus putting tension on them. If they are stretched and tense, then they can contract (left picture). If the hamstrings are slack and shortened, then they cannot be contracted any more and therefore will not contribute to the movement (right picture).

This example applies to the start of a deadlift or the bottom of a squat. Note the emphasis on “relative lumbar extension and anterior pelvic tilt” — if they occur too much then we can have the “over extension” problem.

Think of an overly extended spine as putting a kink in the body’s trunk, or something that weakens the transmission of force. However, unlike the rounded back, various muscles are contracted and maintaining tension, so everything may look and feel correct…until an injury occurs. This over extension puts a lot of stress on the vertebral bodies. Arching the back can open the intervertebral space in the front and close it in the back (see image below). Structures like the disc, tendons, muscles, or ligaments can fail in an acute injury and produce that “yanking” sensation followed by pain and inflammation.

Note how the posterior aspect could be pinched down under a load.

Note in the right image how the posterior aspect of the lumbar spine could be pinched down if this spine was loaded with a lot of weight.

This is not supposed to be a comprehensive look at acute or long-term injury, but merely a demonstration to understand how loading the spine in this way could result in one. Long-term loading with hyperlordosis can worsen or cause poor mobility issues as well as degenerative disc issues. Using poor mechanics chronically is probably the most common cause of lifting related injuries as they will cause nagging problems, or will result in a “final stroke” injury (see The Final Stroke).

How To Cue A Better Position

Enough talk about how and why, let’s correct it. The concept revolves around adding tension to the lower abdominals by simply contracting them a bit prior to moving the bar and maintaining the tension throughout the lift. No, this is not a monumental cue, but it’s something that many ignore and it can eradicate a lot of positional errors.

Simply contract the lower abs. They don’t need to be clenched like Houdini readying himself for a gut punch; just put some light tension — about 25 to 50%. Yet this cue must be accompanied by a solid “chest up” position. While standing in a neutral position — anatomical position will suffice for the teaching process — lift the chest towards the chin. Do not lower the chin to the chest, but lift the chest. This is thoracic extension and is the first step to good spinal positioning. Next, contract the lower abdominals, which are usually lower than the belly button. The trainee or coach can lightly press on the area to test the tension. Go ahead and contract them as hard as possible and then lighten the tension to 25 to 50%. Don’t worry about being exact, just maintain a little bit of tension. This creates lower abdominal tension, which is the second step to good spinal positioning.

Some people might call this “pelvic floor activation” or other five dollar phrases, but abdominal contraction will a) place tension on the abdominals to not allow the pelvis to anteriorily tilt, thus preventing an over-extension fault, b) helps actively increase the intra abdominal and thoracic pressure which increases the trunk stability which increases the transmission of force which inevitably increases lifting efficiency and safety, c) provides tension on the front of the pelvis to compliment the posterior chain’s tension, and d) ultimately helps keep the spine in a neutral, force transmitting position. I could probably write a single post on each one of those points, but I think you now understand why abdominal tension is helpful.

The biggest fault with contracting the lower abdominals is not emphasizing the “chest up” thoracic extension with it, which is why I make “chest up” the first step. If you contract your abs without “chest up”, you can possibly round your back and fall into the pooping dog model (extremely safe for work). Pooping dogs are funny, but not on the platform.

How I Integrate These Cues

I have a few rules for lifting, and one of them is, “Whenever the bar is moving, treat it like a maximal lift.” This means you put yourself in the most stable, efficient possible whenever the body is loaded regardless of the weight. That means a big, full breath is held with the chest up with tension on the lower abs. When I coach, I think in terms of “passive” and “active” cues. I want spinal stability to be a passive cue, meaning it is something that I shouldn’t have to cue and is routine to the trainee. If they always have good spinal position, I don’t have to cue it and can focus on the “active cues” associated with their mechanics in the lift.

We want a solid spinal position to always be there. Remember the steps from earlier:

1. Extend the thoracic spine
2. Contract the lower abs

After explaining what these concepts are and teaching their respective positions, I cue them with:

1. “Chest up”
2. “Lock the abs”

Remember that cues are supposed to be representative of a concept you concisely taught the trainee. You will almost always need to adapt the way you act, speak, and use terminology with your respective trainee. Teach the concept, teach the position, then use a short cue to remind them of that position. I like the simplicity of “chest up” and “lock down the abs” or “lock the abs”. I specifically teach trainees to lift the chest, take a big breath, and lock the abs when the breath is held. This gives them a sequence to perform every single rep on every single set. Lift the chest, take a breath, and lock the abs. It should be automatic, so teach it as such. If this is taught in a single session, then the coach only needs to occasionally remind the trainee and instead can focus on the mechanics of the squat, deadlift, and so on.

This spine is mostly neutral, but I figured you'd think it was nice to look at.

This spine is mostly neutral, but I figured you’d think it was nice to look at.

The Result…

…is a nice, neutral spine that transmits force without any spine or hip deviation throughout the lift. Most athletes, lifters, or trainees who don’t use this method would benefit from a short linear progression focusing on this spinal position (i.e. 2 to 4 weeks).

A strong, neutral spine will allow the hips to properly externally rotate during squats and pulls (a very important concept that leaves the scope of this post). It will also avoid subjecting the soft tissue structures around the spine from receiving force incorrectly, which is ultimately the best way to prevent lifting related injuries. Most linear progressions are associated with nagging aches and pains with the occasional injury that prevents training. Lifting does not cause injury; improper mobility and mechanics in lifting do. Anyone who tells you that injuries are a byproduct of training is just making excuses for hurting their trainees. You’ll probably experience an injury in your pursuit of strength, but they don’t happen “just because”. Lower spinal injuries are entirely preventable, and by using the cues described above — with appropriate mobility work, programming, and recovery — you can actively work to avoid injuries.

Some other articles you may be interested in are:
Rack Pull Tidbits
The Butt Wink
“Hip torque”, toe angle, and squatting

Soft Tissue Work Isn’t The Enemy

It bothers me when people, even the educated ones, say that muscles are “just not firing”, as if there is a total lack of innervation in an otherwise healthy individual (i.e. no radiculopathy or motor unit issues). Sure, muscles can be rendered ineffective because of tightness or bad mechanics — and thus their inclusion in movement is impaired — but they aren’t “not firing”. Subsequently, you don’t “teach muscles to fire” in the absence of the pathology mentioned above. This was my first issue with the article “Your IT Band is Not the Enemy” by Robert Comacho.

There’s so much silly in-fighting in the strength and conditioning world I feel the need to preface this god damn article by saying I’m sure Robert is a nice guy, an effective coach, and I don’t think he’s a piece of shit. I’m just going to disagree with the point of his article and I’m sure he’s man enough to accept that. And if he’s not, then he’ll scream into his pillow.

I’m actually disappointed in this article since it said the foam roller may be the enemy, yet there wasn’t much evidence supporting the statement. There are a lot of things that can result in a tight iliotibial tract, or IT band, because there are quite a few structures that interact with it. The author is right in the roles of the TFL and the gluteus medius in how they attach to the IT band with their inferior (or lower) attachments and help stabilize the knee. The vastus lateralis (the outside quad) also has some IT interaction and can affect function in the area as well. Note that other muscles that don’t actually touch the IT band can exacerbate tightness or pain too. But describing articulations with the IT band is incomplete because movement and mechanics will dictate muscular function and therefore tightness and pain at the IT band.

Bad posture, movement, and lifting mechanics will influence what muscles are used, overused, or ineffectively used (though they will still fire, mind you). This is the stuff that will dictate whether or not muscles like the TFL, glute medius, or vastus lateralis are tight and whether or not the IT band incorrectly receives stress and loading. It leaves the scope of this article to detail a comprehensive look at mechanics that effect the IT band, but some mechanic faults include the navicular drop (collapsed foot arch), knees moving in on any movement including walking, running, squatting, etc., and having tight internal rotators at the hip and weak external rotators (for the IT band’s purposes, I’m referring to the posterior fibers of the glute medius). If none of that made any sense, it just means doing athletic stuff with shitty technique will cause IT band issues and that a coach should be fixing it.

But I want to focus on two ideas:
1. Soft tissue work is being demonized.
2. Readers are so quick to hear someone’s opinion and immediately accept it as gospel, stroke its dong, and revel in its post-coitus warmth.

The Demonization of Soft Tissue Work

Foam rollers increase range of motion and reduce pain. My IT bands are tight and my knees hurt. Therefore I should apply the roller to my IT bands to solve these problems, right? Unfortunately, more often than not the answer to this question is a resounding “no.” It’s quite possible you’re actually doing more harm than help and further stretching an already abused and over-elongated piece of tissue. (From Robert’s article)


Unfortunately, most people do roll on their IT band excessively to try to fix it. Robert is right to criticize this, but he makes it seem like there is no place for it and fails to acknowledge that good coaches will not prescribe this. In his defense, he does clarify that, “It wasn’t my intention to state that foam rolling/stretching have no place in this type of rehab, It was more to point out…that the solution may be a bit more complex. (From a reply of his in the comments).

Fair enough, but then why suggest in the title of the article that the foam roller is potentially the problem? That’s like saying guns are a problem instead of the psycho pieces of shit who wield them against innocent people. It may be Breaking Muscle’s fault (the website that published the article); I know that The CrossFit Journal gave my article a shitty title when they published it. A website or journal needs to sell, and unfortunately people are more likely to click something if it’s controversial or big boobs.

As much as people want to say foam rolling or using lacrosse balls is actually harmful, the practical evidence suggests otherwise. Should we just mash on shit when it hurts? No, sir. But well thought out and executed soft tissue work can not only improve a lot of issues, but they are necessary in the absence of a good physical therapist. If you — whether you’re a trainee or a coach — want to improve your knowledge about this, then get your nose in a book or a college class and learn musculoskeletal anatomy. Learn about biomechanics and how to optimally distribute force efficiently. Learn about trigger point therapy and different types of injuries. I wrote two articles (“Why Anatomy Is Important” and “Learning About Strength and Conditioning“) that include some resources about this material, but I’ve learned most of it by doing and thinking.

This article isn’t a guide on how to do soft tissue, but I want to defiantly stand against the notion that it’s the enemy. Stupid soft tissue work is the enemy, just like the stupid use of Valium and a heavy machinery is the enemy. Coaches and trainees who actually give a shit need to think, which leads me to my next point.

Use Your Fucking Noggin

Below is something I saw on Facebook.
CaptureA few things:

1. The post the person linked to is from “I Fucking Love Science”, which is a stupid fucking piece of shit Facebook page that is the epitome of irrelevant material and aims for self popularity instead of the dissemination of knowledge. Read Maddox’s entertaining article about it.

2. I really wanted to be way more of an asshole, but I actually have a pretty thick filter. The point: if there were a giant ligament in every person’s knee, don’t you think somebody would have noticed in the last 2,000 years?

3. People ate this steaming bullshit up and then asked for seconds and thirds. This is a problem.

Readers are so god damn quick to immediately and irrevocably believe whatever they are being told, regardless of the qualifications of the person writing it. It could be written by some goober who has never coached anyone or someone who has many degrees and athletes, but is borderline retarded.

As a consumer about training information, you need to be openly skeptical about everything you read or hear. Hearing something that makes you feel good or that you agree with doesn’t make it 100% true. If the coach who has been watching you squat for two years tells you to do something, they should have the ability and the proverbial balls to explain it to you, even if it’s merely a hunch or experiment.

When a guy like Robert writes an article that says your foam roller is the problem, don’t immediately say, “I FUCKING KNEW IT. THIS PROVES WHAT I’VE THOUGHT ALL ALONG.” Read what the dude is actually saying, question it, and see what info you can use. Discuss it. Think about it.

Foam rollers, rumble rollers, lacrosse balls, and Theracanes are not the enemy; our brains are. Let’s hold them accountable.