Chalk Talk #4 – Trunk Stability When Pressing

The press is a fantastic exercise because it integrates the entire body and creates the largest kinetic chain exercise; everything from the feet articulating with the ground to the hands holding the bar overhead. It’s a significant trunk builder, but press mechanics and strength are better expressed when the trunk is purposely contracted and tightened.

In this video you’ll see an example of a press without trunk tightness followed by reps where an emphasis is placed on tightness.

There’s something I cued her to on a few days later that made an additional impact: I cued contraction of the quadriceps after explaining the importance of making the entire body stable. If the quadriceps have tension, it will prevent the knees from unlocking. If the knees unlock as the press rebounds out of the bottom, the lifter loses some of that force application in the soft, unstable knees. Maintaining quadriceps tension prevents that force loss, but also helps provide a very strong, stable base to press from. Contracting the quadriceps with the entire trunk (with an emphasis on the lower abs) made Aly’s reps much faster and easier, even compared to the final reps in the above video.

Note that this emphasis on trunk stability via tightness and keeping tension on all relevant joints and muscles should be applied into every lift.

External Hip Rotation in the Squat

QTsoGXhFriday I put the image to the right in the PR Friday post and asked people to explain what was wrong with it. There were a variety of good points, but I wanted to focus on the thing that stuck out to me. Before we begin, let’s all agree that the fact this girl is squatting is more important than not squatting; this concept always trumps any bickering that follows. With that being said, I teach that if you’re going to spend the time doing something, do it in the most efficient manner possible.

For the sake of giving this girl credit, she’s got a decent bar positioning, is trying to apply force with the lateral part of her foot (to prevent a navicular drop AKA collapsed arch which medially rotates the knee and hip), and she is probably at an appropriate depth (this picture is a weird angle). It’s possible she’s doing this weird-ass squat on purpose, but we’re gonna talk about it anyway.

As a lifting coach you’ll see many things wrong with a given lift – feet, knees, hips, trunk, shoulders, chest, elbows, grip, neck, etc. — and you can’t and shouldn’t try and correct all of them at once. Fix the thing that will have the greatest effect on the gross movement. In this case I’d start with the stance.

A wide stance inherently does not allow significant external rotation relative to foot position. External rotation allows the following:

1. It contracts the external rotators.

2. It lengthens, and therefore creates tension on, the internal rotators.

3. Therefore it creates greater tension about the hip. Tension around ball and socket joints means more stability therefore strength.

This is a what a pooping dog looks like. As a man.

This is a what a pooping dog looks like. As a man.

4. It maximizes the musculature used about the hip. In this case, assuming a good foot-to-ground interaction, force is more easily distributed across the lateral portion of the thigh on both the front and the back. Valgus, or knees in, knee positioning removes this area of musculature and emphasizes the medial quadriceps. As I explained last week, external rotation also allows greater posterior chain involvement, even in the high bar.

5. Externally rotating the hip prevents impingement of the femur against the anterior portion of the acetabulum (i.e. the leg bone from impinging on the hip socket). Avoiding this impingement facilitates squat depth as well as maintaining proper trunk positioning while achieving depth; squatting with knees forward will impinge the hip and posteriorily tilt the pelvis, which makes the person look like a pooping dog. Rippetoe’s “Active Hip” (it’s a pdf) article talks more about this.

When I see poor external rotation, I see a number of ways a squat can be improved, so it’s something I want to focus on. In her case, I’d narrow her stance to about shoulder width and emphasize the external hip rotation. Chances are I would not have to change much else with her, but it would be the first thing to make a habit before worrying about anything else. The first Chalk Talk episode briefly talks about cuing external rotation, but I’ll get into in a later post.

 

Low Bar vs High Bar Squat, Part 2

A couple of years ago I wrote “Low Bar vs High Bar Squat” and it is still one of the most visited, and argued, posts on this site. I re-read the post and felt the need to update some of the information.

In the first post, I compared the positioning, mechanics, and utility of the high bar and low bar squats. All bickering aside, my final recommendation on which squat to use was:

If you’re gonna be a powerlifter, then use the low bar. If you’re going to compete in Olympic weightlifting, then use the high bar. If you have deficiencies in one area, then the other squat can improve that deficiency. If you can do both reasonably well and aren’t training for one of the barbell sports, then use both.

I do want to reiterate one point, and that is how the low bar squat should not be used for competitive weightlifting. Since weightlifting elements are common in CrossFit competition, I would also not predominantly use the low bar squat in CrossFit programming unless it was in the off-season. This is not any kind of attack on Mark Rippetoe or anyone who promotes the use of the low bar; the low bar is just not efficient for those purposes. Low barring will teach a trainee an inappropriate motor pathway for weightlifting as well as incorrectly developing the hip and thigh musculature.

To my knowledge I’m the one of the few people, if not the only one, who has gone to a USAW National event by primarily low bar back squatting. It definitely made receiving positions in the clean and snatch unnecessarily difficult as well as created mechanical problems (i.e. pitching forward when trying to squat out of the receiving position). After high barring consistently and dropping about 15 pounds of body weight, I was hitting the same PR snatch and CJ numbers with a weaker squat, and it was partially due to bettering the motor pathway of my receiving position and developing the musculature in a way that supports that pathway (The other variable of my improved numbers was that I significantly improved my weightlifting technique).

From a mechanical analysis perspective, it doesn’t make sense to low bar for weightlifting and it has not proved to be effective in my training or anyone I have coached. But enough about me, for gods’ sakes, let’s get to the amendments I have about the original Low Bar vs. High Bar article.

Hamstring tension during the high bar squat

In the first article I made a blanket statement saying, “the (high bar squat) ascent begins with zero hamstring tension due to knee flexion”. To review, if there is too much knee flexion, then there is not tension in the hamstrings since they cross both the knee and the hip. Yet, saying that all high bar squats have zero hamstring tension at the bottom position is not correct in all situations.

This is an ATG squat

This is an ATG squat

There are different ways to high bar squat. One method used by weightlifters is essentially collapsing into the bottom and allowing the backs of the hamstrings to slam onto the calves in complete knee flexion. The knees usually jut forward and some people say the rebound occurs off of the ligaments of the knees, though it’s probably a combination of the soft tissue around the ankles, knees and hips. The rebound off the soft tissue and joints is used as a rebound to drive the weight up. It’s similar to catching a clean or snatch very quickly. This can be called “ass to grass” or ATG squats. Another method is similar, except instead of crashing into the bottom position, the weight is lowered under control until the same bottom position is met. These are also referred to as ATG squats, but the weight is lowered under tension.

This is a non-ATG high bar squat

This is a non-ATG high bar squat

Lastly, the bottom position of a high bar squat can be a couple of inches below parallel, much like the low bar squat. To quantify this, the crease of the hip would need to be at a lower level than the knee cap (i.e. the point in which the head of the femur articulates with the acetabulum would be lower than the top of the patella). The weight would be controlled to this bottom position, and then squatted up.

While there is more knee flexion than in a low bar squat, there is not complete knee flexion and therefore not complete slackening in the hamstring. The hamstring is obviously much more slack than a low bar squat, but it will have some tension, especially when the trainee is externally rotating the hips effectively. External hip rotation effectively stretches out both the adductors and at least the medial hamstrings, therefore it creates tension around the hip. This is how I coach the high bar squat, especially with beginners.

All of the text in this section serves to show that I no longer think there is zero tension at the bottom of a non-ATG high bar squat.

Net anterior/posterior knee forces during the high bar squat

This is a mega ATG squat that is rebounding off of all of the soft tissue

This is a mega ATG squat that is rebounding off of all of the soft tissue

And all of the above text is important to make this point right here. Since there is adductor and hamstring tension applied in a non ATG high bar squat, these muscles apply a posterior force on the tibia. Therefore, the net force is not entirely anterior and therefore not as abrasive to the knees as originally thought. ATG squats will yield significantly higher anterior stress (i.e. the front of the knees), but ATG and regular high bar squats can still recruit hamstring tension on the ascent. If there is tension at the bottom of a non-ATG squat, and there is hamstring tension on the ascent (due to the hamstrings maintaining the back angle by their attachment on the pelvis), then the high bar squat can be excused from “knee wrecking” accusations.

In order to provide this tension the trainee would need to properly externally rotate at the hip, therefore making the high bar squat more difficult to master than I made it out to be in the first article when I said, “To learn how to high bar squat, put a bar on your back and squat all the way down with your knees shoved out.” A quality high bar squat will require good external rotation (to be discussed in another post and video). 

The stretch reflex is still present in a high bar squat

Despite the pad, this is a pretty good high bar squat. And impressive if real

Despite the pad, this is a pretty good high bar squat. And impressive if real.

Because there is hamstring and adductor tension at the bottom of a non ATG high bar squat, there is tension to execute a stretch reflex. The stretch reflex is one of the most important qualities of a low bar squat. Once a trainee starts mastering the low bar mechanics, I teach them how to “bounce” out of the hole with hip drive. The same thing can happen in the high bar squat, yet the intent and cues are different. Whereas in the low bar the trainee is aiming to “push the butt up” (a specific cue I found to be better than “drive the butt/hip up”), the high bar squatter will “drive the heels” while maintaining the external rotation.

Overall, the point in this section is to state that there is not complete knee flexion in a high bar squat, there is adductor and hamstring tension, and therefore there is a stretch reflex off of these muscles when coming out of the hole.

There is a difference

One issue that pops up occasionally is the idea that there is not a difference between the high bar and low bar. I guess the point is that there is not a mechanical difference, an adaptation difference, or that it doesn’t matter which one you do.

Some people may not have a noticeable difference in seeing or executing the two types of squat if they are a) very immobile, b) very uncoordinated, or c) squat with a wide-geared-powerlifting stance. Having crappy mobility would make it hard to see a difference between the two squat variants. Crappy mobility in the hips, knees, and ankles, would prevent a proper bottom position in a high bar. Crappy shoulder mobility would prevent a good rack in a high or low bar position (I’ve seen both). Therefore, when they attempt one or the other squat version, it just turns into a bastardized version of whatever their mobility permits.

The uncoordinated trainee may have the mobility to rack the bar or get into a bottom position, but he doesn’t have the coordination (or coaching) to execute the squat version.

Lastly, wide stance squatters aim to have vertical shins, sit back very far, and lean over to achieve hip flexion. This style of squatting — which I am not a fan of — developed in order to take advantage of gear that resists hip flexion (i.e. it helps extend the hips AKA squat up). Wide stance squatting relies on gear instead of good external hip rotation to provide force. Wide stance squatting will also look nearly the same regardless if the bar is placed on the traps (high bar) or on the rear delts (low bar), therefore there won’t be much of a difference between the two squats because the mechanics are the same anyway.

Despite the fact that large weights have been squatted with these wide stance squats, it doesn’t use the non-geared anatomy efficiently, is therefore more injurious, and is not conducive to athletics, weightlifting, or general performance. But I digress.

In closing…

It's better to have squatted than to not have squatted at all

I ended up talking a lot about the high bar squat and neglected the low bar squat. I just needed to revise and explain the above statements about the high bar. The low bar is still what I would coach for raw powerlifting, but if someone were interested in competing in weightlifting or CrossFit, then I would have them high bar. It would just depend on the individual, as usual. One thing we can all agree on…it’s better to have squatted than to not have squatted at all.

Chalk Talk – #1 – Squat Knee Control

During the Q&A a week or so ago, some members were asking for a regularly updated “show” on YouTube (since they are the cool thing to do in the fitness-sphere).

In episode #1 I’m talking about knee control in the squat. A common problem with squatting is that trainees don’t have control of what their knees are doing because their external hip rotators — particularly the glutes — are not trained to maintain tension throughout the movement. In this video I show one of my wife’s front squat sets where you can see when she actively engages the external rotators and when she does not. Her case is specific: she had a long term hip injury and front squats focused on this glute activation have been the rehab. Don’t focus on my cues as I’m trying more so to talk to the camera than her, but also the cues she and I have for this issue are vague because she understands what she is supposed to do after we spent a lot of time teaching her what “correct” felt like.

In any case, this is the first episode of Chalk Talk. Discuss in the comments and feel free to request new topics.

A Better Spinal Cue

I was being coached on rack pulls and was told to arch my back as hard as I could. I did so, started pulling the weight, and YANK; there went something in my lower back. Severe sharp pain indicated the end of my lifting session as well as the next week or two of training. I didn’t know as much as I did now, but the injury — and time away from training — all could have been avoided with a better spinal cue.

There are two basic types of incorrect spinal position in lifting: over extension and over flexion.

Over Flexion, Round Back, or Lumbar Hyperkyphosis

round

Obvious flexion

This is the position that most coaches, especially the inexperienced, are most afraid of. It’s the default position for new trainees and very easy to identify. New trainees look like this because a) they do not have any kinesthetic awareness (i.e. have no control of what their body is doing), b) typically have no hamstring or lower back strength, and c) have very poor mobility.

Correcting kinesthetic awareness and mobility take time, so the quick and easy fix is to say “arch your back”. Usually this cue will improve a new trainee’s mechanics immediately, and usually hamstring strength, kinesthetic awareness, or mobility don’t have to be addressed for months. This means that people who only coach beginners will default into cuing “arch the back” and ignore other variables. If you neglect to address these variables and just focus on increasing the lifting load, then at some point they’ll experience an injury, great or small. Increasing the weight lifted is not necessarily synonymous with getting stronger.

Over Extension, Arched Back, Hyperlordosis

Too extended

Too extended

This position is difficult to distinguish from a neutral (i.e. correct and optimal) spinal position, therefore inexperienced coaches overlook it. Experienced coaches occasionally think an overly arched back is acceptable to avoid a rounded back, but a good coach will cue the correct position to avoid injury.

Two areas are often affected by hyperlordosis: the thoracolumbar junction (where the thoracic and lumbar spine meet) and the lumbosacral junction (where the lumbar and sacral spine meet — see image below). These are easy landmarks any coach should be able to identify on their trainee, but don’t worry about the more complicated anatomy under the skin right now. Here we will focus on how the overly arched position is a great way to cause disc irritation or strain muscles.

spine1

Note the junctions between different areas of the spine. Click for larger view.

Why These Positions Are Bad

Both spinal position extremes, flexion and extension, can cause injury and are indicative of a lack of strength and positional control. Whether we call this kinesthetic awareness, neuromuscular efficiency, coordination, technique, or mechanics is irrelevant; let’s set the rhetoric aside and briefly discuss why each position is poor.

An overly flexed spine means that the related spinal muscles are not doing their job of holding the spine and pelvis in place. It’s important to remember the integration of spine and pelvis in lifting mechanics as it will determine stability, transmission of force, and subsequently overall strength. If the muscles aren’t doing their job, then they don’t get stronger. But a secondary impact is that other muscles can’t do their job when the spine and pelvis are out of position. The best and most obvious example is with the hamstrings.

A fantastic image I made long ago for this topic.

A fantastic image I made long ago for this topic.

If the pelvis and spine are rounded — which is lumbar flexion and a posterior pelvic tilt — as they are on the right, then the hamstrings will be slack and the trainee will look like a dog pooping. If the spine and pelvis are in a neutral, stable position — a relative lumbar extension and anterior pelvic tilt — then it pulls the proximal (or higher) attachment of the hamstrings back, thus putting tension on them. If they are stretched and tense, then they can contract (left picture). If the hamstrings are slack and shortened, then they cannot be contracted any more and therefore will not contribute to the movement (right picture).

This example applies to the start of a deadlift or the bottom of a squat. Note the emphasis on “relative lumbar extension and anterior pelvic tilt” — if they occur too much then we can have the “over extension” problem.

Think of an overly extended spine as putting a kink in the body’s trunk, or something that weakens the transmission of force. However, unlike the rounded back, various muscles are contracted and maintaining tension, so everything may look and feel correct…until an injury occurs. This over extension puts a lot of stress on the vertebral bodies. Arching the back can open the intervertebral space in the front and close it in the back (see image below). Structures like the disc, tendons, muscles, or ligaments can fail in an acute injury and produce that “yanking” sensation followed by pain and inflammation.

Note how the posterior aspect could be pinched down under a load.

Note in the right image how the posterior aspect of the lumbar spine could be pinched down if this spine was loaded with a lot of weight.

This is not supposed to be a comprehensive look at acute or long-term injury, but merely a demonstration to understand how loading the spine in this way could result in one. Long-term loading with hyperlordosis can worsen or cause poor mobility issues as well as degenerative disc issues. Using poor mechanics chronically is probably the most common cause of lifting related injuries as they will cause nagging problems, or will result in a “final stroke” injury (see The Final Stroke).

How To Cue A Better Position

Enough talk about how and why, let’s correct it. The concept revolves around adding tension to the lower abdominals by simply contracting them a bit prior to moving the bar and maintaining the tension throughout the lift. No, this is not a monumental cue, but it’s something that many ignore and it can eradicate a lot of positional errors.

Simply contract the lower abs. They don’t need to be clenched like Houdini readying himself for a gut punch; just put some light tension — about 25 to 50%. Yet this cue must be accompanied by a solid “chest up” position. While standing in a neutral position — anatomical position will suffice for the teaching process — lift the chest towards the chin. Do not lower the chin to the chest, but lift the chest. This is thoracic extension and is the first step to good spinal positioning. Next, contract the lower abdominals, which are usually lower than the belly button. The trainee or coach can lightly press on the area to test the tension. Go ahead and contract them as hard as possible and then lighten the tension to 25 to 50%. Don’t worry about being exact, just maintain a little bit of tension. This creates lower abdominal tension, which is the second step to good spinal positioning.

Some people might call this “pelvic floor activation” or other five dollar phrases, but abdominal contraction will a) place tension on the abdominals to not allow the pelvis to anteriorily tilt, thus preventing an over-extension fault, b) helps actively increase the intra abdominal and thoracic pressure which increases the trunk stability which increases the transmission of force which inevitably increases lifting efficiency and safety, c) provides tension on the front of the pelvis to compliment the posterior chain’s tension, and d) ultimately helps keep the spine in a neutral, force transmitting position. I could probably write a single post on each one of those points, but I think you now understand why abdominal tension is helpful.

The biggest fault with contracting the lower abdominals is not emphasizing the “chest up” thoracic extension with it, which is why I make “chest up” the first step. If you contract your abs without “chest up”, you can possibly round your back and fall into the pooping dog model (extremely safe for work). Pooping dogs are funny, but not on the platform.

How I Integrate These Cues

I have a few rules for lifting, and one of them is, “Whenever the bar is moving, treat it like a maximal lift.” This means you put yourself in the most stable, efficient possible whenever the body is loaded regardless of the weight. That means a big, full breath is held with the chest up with tension on the lower abs. When I coach, I think in terms of “passive” and “active” cues. I want spinal stability to be a passive cue, meaning it is something that I shouldn’t have to cue and is routine to the trainee. If they always have good spinal position, I don’t have to cue it and can focus on the “active cues” associated with their mechanics in the lift.

We want a solid spinal position to always be there. Remember the steps from earlier:

1. Extend the thoracic spine
2. Contract the lower abs

After explaining what these concepts are and teaching their respective positions, I cue them with:

1. “Chest up”
2. “Lock the abs”

Remember that cues are supposed to be representative of a concept you concisely taught the trainee. You will almost always need to adapt the way you act, speak, and use terminology with your respective trainee. Teach the concept, teach the position, then use a short cue to remind them of that position. I like the simplicity of “chest up” and “lock down the abs” or “lock the abs”. I specifically teach trainees to lift the chest, take a big breath, and lock the abs when the breath is held. This gives them a sequence to perform every single rep on every single set. Lift the chest, take a breath, and lock the abs. It should be automatic, so teach it as such. If this is taught in a single session, then the coach only needs to occasionally remind the trainee and instead can focus on the mechanics of the squat, deadlift, and so on.

This spine is mostly neutral, but I figured you'd think it was nice to look at.

This spine is mostly neutral, but I figured you’d think it was nice to look at.

The Result…

…is a nice, neutral spine that transmits force without any spine or hip deviation throughout the lift. Most athletes, lifters, or trainees who don’t use this method would benefit from a short linear progression focusing on this spinal position (i.e. 2 to 4 weeks).

A strong, neutral spine will allow the hips to properly externally rotate during squats and pulls (a very important concept that leaves the scope of this post). It will also avoid subjecting the soft tissue structures around the spine from receiving force incorrectly, which is ultimately the best way to prevent lifting related injuries. Most linear progressions are associated with nagging aches and pains with the occasional injury that prevents training. Lifting does not cause injury; improper mobility and mechanics in lifting do. Anyone who tells you that injuries are a byproduct of training is just making excuses for hurting their trainees. You’ll probably experience an injury in your pursuit of strength, but they don’t happen “just because”. Lower spinal injuries are entirely preventable, and by using the cues described above — with appropriate mobility work, programming, and recovery — you can actively work to avoid injuries.

Some other articles you may be interested in are:
Rack Pull Tidbits
The RDL
The Butt Wink
Hyperlordosis
“Hip torque”, toe angle, and squatting